Message d'état OK
Partager cet article
Actualités similaires
banquier-prive

Banquier privé : fiche métier

Le métier de banquier privé fait partie des plus prisés parmi ceux du...

En lire plus

Le métier de conseiller en investissements financiers

Être conseiller en investissements financiers constitue l’objectif...

En lire plus

conseiller-patrimoine

Conseiller patrimonial : fiche métier

Le conseiller patrimonial est un expert en investissement et en...

En lire plus

directeur-administratif-financier

Directeur administratif et financier : fiche métier

Le métier de directeur administratif et financier est très prisé en...

En lire plus

metier-conseiller-financier

Conseiller financier : missions, formation, salaire

Le conseiller financier joue un rôle clé dans l'accompagnement des...

En lire plus

Tout savoir sur le machine learning

ESG Executive

Le machine learning, ou apprentissage automatique, est un concept qui permet aux ordinateurs d'apprendre et de s'améliorer sans être explicitement programmés.

Grâce aux algorithmes et aux modèles statistiques, le machine learning facilite l'extraction de connaissances et la prise de décisions intelligentes à partir de données, ce qui ouvre ainsi de nouvelles perspectives dans de nombreux domaines.

Comment fonctionne le machine learning ?

Le machine learning est une branche de l'intelligence artificielle (IA) qui permet aux machines d'apprendre et de prendre des décisions à partir de certaines informations.

Il s'agit d'un processus par lequel les ordinateurs sont capables d'analyser des données, d'identifier des schémas et de tirer des conclusions sans intervention humaine directe.

Le processus d'apprentissage peut être divisé en trois étapes principales : l'entraînement, la validation et le déploiement.

Dans la phase d'entraînement, un modèle de machine learning est alimenté avec un ensemble de données d'apprentissage contenant des exemples et des caractéristiques.

Après le processus d'entraînement, le modèle est validé à l'aide des données de validation distinctes pour évaluer les performances. Cela permet de s'assurer que l'algorithme est capable de généraliser les connaissances apprises sur de nouvelles données et d'éviter le surapprentissage.

Une fois que le modèle est validé, il peut être déployé pour effectuer des prédictions ou prendre des décisions sur de nouvelles informations. Il peut être utilisé pour classer des images, prédire des valeurs numériques, recommander des produits, détecter des fraudes, etc.

Cet apprentissage statistique utilise différents types d'algorithmes, comme les réseaux de neurones, les arbres de décision, les machines à vecteurs de support, les algorithmes de clustering, etc.

Quels sont les algorithmes utilisés dans le machine learning ?

Il existe de nombreux algorithmes de machine learning qui sont appliqués pour résoudre une variété de problèmes.

  • Régression linéaire : ce modèle de régression est employé pour représenter les relations linéaires entre une variable cible continue et des variables prédictives.
  • Régression logistique : la modélisation logistique est utilisée pour les problèmes de classification binaire. Elle permet de prédire une variable dépendante catégorielle avec deux classes distinctes en fonction des caractéristiques ou des prédicteurs.
  • Arbres de décision : les arbres de décision sont des structures en forme d'arbre où chaque nœud représente un choix basé sur une caractéristique spécifique. Ils peuvent être utilisés pour la classification et la régression.
  • Forêts aléatoires : c'est un ensemble d'arbres de décision construits à partir d'un sous-ensemble aléatoire des données d'entraînement. La prédiction finale est obtenue par vote majoritaire des résultats des éléments individuels.
  • Machines à vecteurs de support (SVM) : cette technique d'apprentissage est utilisée pour la classification et la régression. Elle trouve l'hyperplan qui sépare les données de différentes classes de manière optimale dans un espace de plus grande dimension.
  • Réseaux de neurones artificiels : grâce aux modèles d'apprentissage, les réseaux de neurones artificiels s'inspirent du fonctionnement du cerveau. Ils sont capables d'apprendre des représentations hiérarchiques des données et sont utilisés dans de nombreux domaines, notamment la vision par ordinateur et le traitement du langage naturel.
  • K plus proches voisins (KNN) : c'est une méthode simple où les prédictions sont basées sur les k échantillons les plus proches dans l'espace des caractéristiques
  • Clustering : ce concept permet de regrouper des données similaires en groupes homogènes. Les algorithmes populaires incluent le K-means, le clustering hiérarchique et le DBSCAN (un algorithme de partitionnement de données)
  • Algorithmes d'apprentissage non supervisé : ces algorithmes permettent de découvrir des structures et des modèles dans les données, comme l'analyse en composantes principales (PCA) et la réduction de dimensionnalité
  • Réseaux de neurones convolutifs (CNN) : il s'agit d'une architecture de réseau de neurones spécifiquement conçue pour le traitement des images

Ces algorithmes de machine learning sont utilisés en fonction du type de problème à résoudre, des caractéristiques des données et des objectifs spécifiques de l'application. Il est important de choisir la procédure appropriée selon les exigences de chaque situation.

Quelles sont les formations pour devenir un professionnel du machine learning ?

ESG Executive présente des programmes de formation adaptés aux professionnels en reconversion ou qui souhaitent donner un nouvel essor à leur carrière.

Pour accéder à des postes dans le domaine du machine learning, vous pouvez par exemple vous inscrire à l'Executive MBA Big Data, qui est permet d'obtenir le titre officiel d'Expert en stratégie et développement digital, inscrit au RNCP, Répertoire national des certifications professionnelles. Cette qualification est de niveau 7, soit bac+5.

L'entrée dans ce cursus est réservée aux professionnels en activité ayant 5 à 7 ans d'expérience au minimum (selon leur niveau d'études).

Télécharger la brochure et le dossier de candidature

ESG Executive Education traite les données recueillies afin de gérer vos demandes d’information et vous accompagner dans votre orientation. Nous vous informons que l’ESG Executive Education utilise vos données à des fins marketings pour personnaliser et adapter ses offres de services à vos besoins et établir des statistiques et des modèles de profils marketings. En communiquant vos coordonnées, vous consentez à être contacté par nos conseillers du lundi au vendredi de 9h30 à 19h00. Vos données seront conservées pour une durée de 3 ans ; pour en savoir plus sur la gestion de vos données personnelles et pour exercer vos droits, veuillez consulter la politique de protection des données de l’école ou envoyer un mail à l’adresse dpo@esg-executive.fr.

Etre contacté(e) par un conseiller VAE